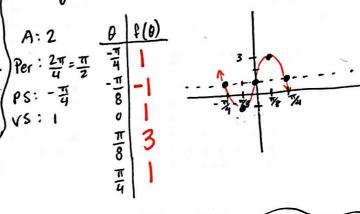
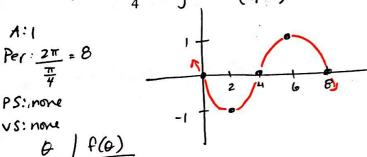


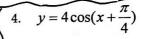
Graph each

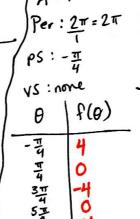

A:3

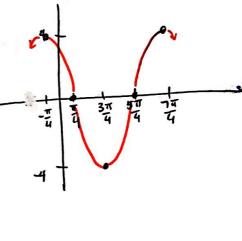
vs: -1

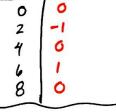

1.
$$y = -3\cos(\frac{x}{2} - \frac{\pi}{6}) - 1$$

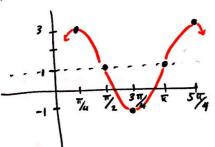
 $y = -3\cos\left[\frac{1}{2}(x - \frac{\pi}{3})\right] - 1$

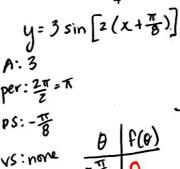



2.	$y = 1 - 2\sin(4x + \pi)$ $y = -2\sin(4(x + \frac{\pi}{4})) + 1$

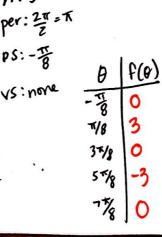


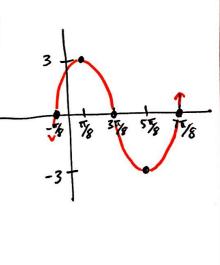

3.
$$y = -\sin\frac{\pi x}{4}$$
 $y = -\sin\left(\frac{\pi}{4}\right)$


5.
$$y = 1 + 2\cos 2(x - \frac{\pi}{4})$$

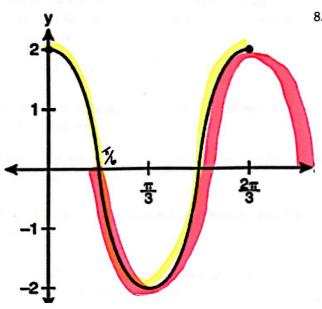

A: 2

Per:
$$\frac{2\pi}{2} = \pi$$

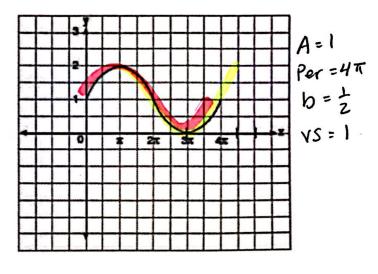

PS: $\frac{\pi}{4}$



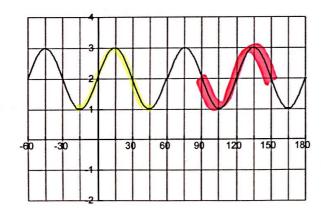
6. $y = 3\sin(2x + \frac{\pi}{4})$



Determine a sine and a cosine equation for the following graphs.


7.)

VS = 0


8.)

y = cos [(x-π)] + 1

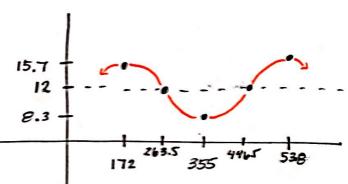
$$y = \sin(\frac{1}{2}x) + 1$$

9.)

A = 1

$$y = -\cos \left[\frac{\pi}{36} (x + 15) \right] + 2$$

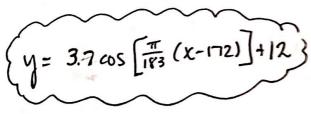
$$\emptyset = -\sin\left[\frac{\pi}{30}(x-90)\right]+2$$


The temperature in an office is controlled by an electronic thermostat. The temperatures vary according to the sinusoidal function:

$$y = 19 + 6\sin\left(\frac{\pi}{12}(x-11)\right)$$

where y is the temperature (°C) and x is the time in hours past midnight.

- a.) What is the temperature in the office at 9 A.M. x=9 y=16 when employees come to work?
- b.) What are the maximum and minimum temperatures $max = midline + amp = 19+le = 25^{\circ}$ in the office? $min = midline amp = 19-le = 13^{\circ}$
- c.) How much time has passed between successive periods of minimum temperatures? $Per = \frac{2\pi}{\frac{\pi}{12}} = \frac{24 \text{ hours}}{12}$


The number of hours of daylight measured in one year in Ellenville can be modeled by a sinusoidal function. During 2006, (not a leap year), the longest day occurred on June 21 with 15.7 hours of daylight. The shortest day of the year occurred on December 21 with 8.3 hours of daylight. Write a sinusoidal equation to model the hours of daylight in Ellenville.

Graph the Equation.

$$A = 3.7$$

Per = 366 •
 $b = \frac{\pi}{183}$
PS = 172
VS = 12

12.

Write a sine function given the following characteristics

June 21 is the 172 day of the year

Dec 21 is the 335 day of the year

				•
Amplitude	Period	Phase Shift	Vertical Shift	Equation
4	3π $b = \frac{2\pi}{3\pi} = \frac{2}{3}$	$\frac{\pi}{2}$	-4	y=4sn[音(ス-芒)]-4
3	4 2T = TZ	-1	$\frac{1}{2}$	y=3 sin [=(x+1)]+=