Name: \qquad Date: \qquad

Using Formulas and Working Backwards

Mutually Exclusive: $P(A \cup B)=P(A)+P(B) \quad$ Overlapping: $P(A \cup B)=P(A)+P(B)-P(A \cap B)$

1. Swim and whistle: Suppose 80% of people can swim. Suppose 70% of people can whistle. Suppose 55% of people can do both. What percentage of people can swim or whistle?
2. Backpack and wallets: At North Cobb, 60% of the students carry a backpack or a wallet. 40% carry only a backpack, and 30% carry only a wallet. If a student is selected at random, find the probability that the student carries both a backpack and a wallet.

Dependent: $P(A \cap B)=P(A) \bullet P(B \mid A)$
Independent: $P(A \cap B)=P(A) \bullet P(B)$
Conditional: $P(A \mid B)=\frac{P(A \cap B)}{P(B)} \quad P(B \mid A)=\frac{P(A \cap B)}{P(A)}$
3. For two events A and B , it is known that $\mathrm{P}(\mathrm{A})=0.2, \mathrm{P}(\mathrm{B})=0.4$ and $P(A \cup B)=0.5$. Find $P(A \cap B)$?
4. For two events X and Y, it is known that $P(X)=1 / 5$ and $P(X \cap Y)=2 / 15$. Find $P(Y \mid X)$.
5. For two events B and C , it is known that $\mathrm{P}(\mathrm{C} \mid \mathrm{B})=0.61$ and $P(C \cap B)=0.48$. Find $\mathrm{P}(\mathrm{B})$.

Dependent: $P(A \cap B)=P(A) \bullet P(B \mid A)$
Independent: $P(A \cap B)=P(A) \bullet P(B)$
Conditional: $P(A \mid B)=\frac{P(A \cap B)}{P(B)} \quad P(B \mid A)=\frac{P(A \cap B)}{P(A)}$
6. Suppose that the probability of Eirik coming to a party is 80% and the probability of Emma coming to a party is 95%. Assuming that these events are independent, what is the probability that they both will come to a party?
7. The probability of playing basketball is 12%, and the probability of playing both basketball and football is 5%. Find the probability of a person playing football, given they play basketball.
8. Lesley-Anne estimates that she has a 75% chance of passing physics and an 80% chance of passing English. Assuming that \{passing English\} and \{passing Physics\} are independent events, what are the odds in favor of Lesley-Anne failing both subjects?
9. Statsville has two computer-controlled traffic lights on the road between the main street and the highway. The probability of getting a red light at the first traffic light is 0.45. The probability of getting a red light at the second one is 0.20 , if you had been stopped by a red light at the first one. What is the probability of being stopped by red lights at both intersections?

