$\mathbf{P}(\mathbf{A} \mid \mathbf{B})$ asks that we find the probability of A given that we know B has or already occurred. Using a formula find the probability of A given B can be found using $\mathbf{P}(\mathbf{A} \mid \mathbf{B})=\frac{\mathrm{P}(\mathrm{A} \text { and } \mathrm{B})}{\mathrm{P}(\mathrm{B})}$

CONDITIONAL PROBABILITY

1. Determine the following conditional probabilities.

Consider drawing 1 card from a standard deck of shuffled cards:

i. $\quad \mathrm{P}($ Queen \mid Face Card $)=\begin{array}{r}\text { Reduced Fraction: } \\ \end{array}$
iv. $P($ Card with a Letter \mid King $)=$

Reduced Fraction:
ii. $\quad \mathrm{P}($ Ace \mid Lettered Card $)=$ Reduced Fraction:
v. $P($ number less than $6 \mid$ Face $\operatorname{Card})=$

Reduced Fraction:
iii. $\mathrm{P}($ Heart with a Number $\mid \operatorname{Red} \operatorname{Card})=$ Reduced Fraction: vi. $\quad \mathrm{P}($ Odd Number \mid Numbered Card $)=$

Reduced Fraction:
2. Consider the following table with information about all of the students taking Statistics at Phoenix High School.
A. $\quad \mathrm{P}($ Full-time \mid Male $)=\begin{array}{r}\text { Reduced Fraction: } \\ \end{array}$ C. $\quad \mathrm{P}($ Female \mid Part-time $)=\square^{\text {Reduced Fraction: }}$
B. $\quad \mathrm{P}($ Male \mid Full-time $)=\begin{array}{r}\text { Reduced Fraction: } \\ \end{array}$
D. $\mathrm{P}($ Full-time \mid Part-time $)=\begin{array}{r}\text { Reduced Fraction: } \\ \end{array}$

	Full- time	Part- Time	Total
Female	28	15	43
Male	12	16	28
Total	40	31	71

